eduqas

GCE AS MARKING SCHEME

SUMMER 2022

AS
 CHEMISTRY - COMPONENT 1 B410U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE AS CHEMISTRY
COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS

SUMMER 2022 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.
cao = correct answer only
ecf $=$ error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
1	(a)		a bond in which the electrons are not shared equally	1			1		
	(b)	$\begin{aligned} & \delta+ \\ & \mathrm{H}-\mathrm{F} \end{aligned}$	1			1			
2		xenon / Xe	1			1			
3		uncertainty in one weighing $=0.0005$ $\begin{equation*} \text { percentage error }=\frac{2 \times 0.0005}{2.750} \times 100=0.036 \% \tag{1} \end{equation*}$		1	1	2	1	2	
4		$\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$	1			1			
5		$\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}$		1		1			
6	(a)	both have their outer electrons in s-orbitals	1			1			
	(b)	magnesium sulfate would give no colour whereas barium sulfate would give a green/apple green colour	1			1		1	
	(c)	any soluble sulfate e.g. sodium sulfate	1			1		1	
		Section A total	7	2	1	10	1	4	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
7	(a)			$\begin{equation*} K_{\mathrm{c}}=\frac{\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.}{[\mathrm{NOCl}]^{2}} \tag{1} \end{equation*}$ unit $\Rightarrow \mathrm{mol} \mathrm{dm}^{-3}$	1	1		2		
	(b)		$\begin{aligned} & {\left[\mathrm{Cl}_{2}\right]=K_{\mathrm{c}} \times \frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}}} \\ & 7.4 \times 10^{-3} \times \frac{(0.126)^{2}}{(0.0573)^{2}} \\ & 0.0358 \\ & \text { ecf possible from incorrect } K_{\mathrm{c}} \text { expression } \end{aligned}$		3		3	2		
	(c)		less chlorine would be produced (1) the equilibrium would shift to oppose the increase in pressure (1) so would move to the side with fewer gas moles / the LHS (1)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3			
			Question 7 total	1	6	1	8	2	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)		(lower than krypton) because xenon is in the next period (1) bigger atomic radius / more shells of electron / more shielding (and so easier to remove outer electron) (1)	2			2		
		(ii)	(higher than iodine) because xenon has a greater nuclear charge / more protons (1) award (1) for either of following with similar shielding (and so harder to remove outer electron) smaller atomic radius (and so harder to remove outer electron)	2			2			
	(b)	(i)	ability of an atom to attract the electrons in a covalent bond	1			1			
		(ii)	(simple) molecular structure			1	1			
		(iii)	$\mathrm{Xe}+\mathrm{F}_{2} \rightarrow \mathrm{XeF}_{2}$		1		1			
		(iv)	$\begin{align*} & \mathrm{n}\left(\mathrm{XeF}_{2}\right)=\frac{5.00}{169}=0.0296 \tag{1}\\ & \mathrm{pV}=\mathrm{nRT} \\ & \mathrm{~V}=\frac{0.0296 \times 8.31 \times 673}{1.00 \times 10^{5}} \tag{1}\\ & 1.66 \mathrm{dm}^{3} \end{align*}$		3		3	2		
		(v)	electron pairs as far apart as possible in order to minimise repulsion (1) lone pairs repel more than bond pairs (and so the angle between them is greater) (1)			2	2			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)			Indicative content Mass spectrometer - Element is vaporised - Ionised by having electron knocked off / electron gun - Positive ions formed - Accelerated by charge plates - Made into beam by slits - Deflected by electromagnet - Deflected according to m / z - Detected - Whole system under vacuum Mass spectrum of chlorine - Peaks at 35 and 37 - two isotopes ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ - These peaks in 3:1 ratio - Peaks due to chlorine molecules - at 70,72 and 74 - These peaks in a ratio of 9:6:1	4	2		6		
			5-6 marks Good description of how the mass spectrometer works; good description of all peal The candidate constructs a relevant, coherent and logically structured method inclin sustained and substantiated line of reasoning is evident and scientific convention 3-4 marks Basic description of how the mass spectrometer works; some knowledge of mo The candidate constructs a coherent account including most of the key elements linking of key points and use of scientific conventions and vocabulary are gener 1-2 marks Description of some processes happening in the mass spectrometer; knowledg The candidate attempts to link at least two relevant points from the indicative co irrelevant material. There is some evidence of appropriate use of scientific conv 0 marks The candidate does not make any attempt or give an answer worthy of credit.	in the ding all and voc ar peak the ind sound. peaks t. Coh ns and	ss spe eleme ulary is in the m tive con to ${ }^{35} \mathrm{Cl}$ nce is li cabula	um of of the d accu spect t. Som $1 \mathrm{dd}{ }^{37} \mathrm{Cl}$ ed by	rine dicativ tely th m of ch eason opes ission	ontent. A ghout. ine is evide d/or inclu	the of	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		330		1		1		
	(ii)	$\begin{align*} & \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{330}{18.02}=18.3 \tag{1}\\ & \text { number of } \mathrm{H} \text { atoms }=2 \times 18.3 \times 6.02 \times 10^{23}=2.20 \times 10^{25} \tag{1}\\ & \text { ecf possible } \end{align*}$		2		2	1		
	(iii)	$\begin{align*} & \text { mass of arsenic }=10 \times 10^{-6} \times \frac{330}{1000}=3.30 \times 10^{-6} \mathrm{~g} \\ & \text { moles of arsenic }=\frac{3.30 \times 10^{-6}}{74.9}=4.41 \times 10^{-8} \tag{1}\\ & \text { mass of copper }=2 \times 10^{-3} \times \frac{110}{1000}=2.20 \times 10^{-4} \mathrm{~g} \\ & \text { moles of copper }=\frac{2.20 \times 10^{-4}}{63.5}=3.46 \times 10^{-6} \tag{1} \end{align*}$ there are more moles of copper (1) working must be shown to award final mark ecf possible throughout		1 1	1	3	2		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)			award (1) for each of following - regular array of metal ions - ions identified as having $3+$ charge - 'sea' of delocalised electrons credit may be awarded for labelled diagram and/or description	1 1		1	3		
	(b)		gallium made of molecules and there are only weak forces (van der waals) between these molecules (1) aluminium is made of metal ions and delocalised electrons held together by strong electrostatic attraction (1) a lot less energy is needed to allow the particles in gallium to overcome the forces holding them in the solid structure than is the case in aluminium (1)			3	3			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)			abundance Ga-69 $=100-\mathrm{Ga}-71$ $\begin{equation*} 69.798=\frac{[69 \times(100-\mathrm{Ga} 11)]+[71 \times \mathrm{Ga} 11]}{100} \tag{1} \end{equation*}$ Ga-71 $=\frac{6979.8-6900}{2}=39.9 \%$ $\mathrm{Ga}-69=60.1 \%$ (1) both values needed		3		3	2	
(d)	(i)	$\mathrm{Ga}(\mathrm{g}) \rightarrow \mathrm{Ga}^{+}(\mathrm{g})+\mathrm{e}^{-}$	1			1			
	(ii)	$1^{\text {st }}$ ionisation energy for one atom $\begin{align*} & \quad=1.602 \times 10^{-19} \times 5.9993=9.61 \times 10^{-19} \tag{1}\\ & E=h \times \frac{c}{\lambda} \quad(1) \tag{1}\\ & \lambda=\frac{h c}{E}=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{9.61 \times 10^{-19}}=2.07 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$		1	1	3	2		
		Question 10 total	3	5	5	13	4	0	

Question				Marking details	Marks available						
				AO1	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)			droplet from the funnel could enter the burette / affect volume / readings / titre	1			1		1
		(ii)		air bubble in jet neutral answer - reference to poor technique e.g. misreading the burette, overshooting the end-point	1			1		1	
	(b)	(i)		award (1) for either of following $\begin{aligned} & 2 \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{NaOH}+\mathrm{CO}_{2} \rightarrow \mathrm{NaHCO}_{3} \end{aligned}$	1			1			
		(ii)	1	2.25×10^{-2}		1		1	1	1	
			II	$\begin{align*} & V=2.50 \mathrm{~cm}^{3} \quad(1) \\ & n=1.00 \times \frac{2.5}{1000}=2.50 \times 10^{-3}(1) \tag{1} \end{align*}$		2		2	1	2	
			III	```moles }\mp@subsup{\textrm{CO}}{3}{2--}=2.50\times1\mp@subsup{0}{}{-3 moles OH-}=2.25\times1\mp@subsup{0}{}{-2}-2.50\times1\mp@subsup{0}{}{-3}=0.020 ecf possible```		2		2	1	2	
			IV	```moles CO2 absorbed = moles CO3 2- made = 2.50 \times 10-3 in 25 cm (1) moles in 1.00 dm}\mp@subsup{}{}{3}\mathrm{ flask }=2.50\times1\mp@subsup{0}{}{-3}\times40=0.100 (1 volume = 0.100 * 24.5 = 2.45 dm }\mp@subsup{}{}{3None```		3		3	2	3	

Question			Marking details		Marks available							
			A01	AO2	AO3	Total	Maths	Prac				
(c)	(i)				fully dissociates in aqueous solution (1) $\begin{equation*} \mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-} \tag{1} \end{equation*}$		1	1		2		
	(ii)	I	$\mathrm{pH}=-\log [0.50]=0.30$			1		1	1			
		11	$\begin{align*} & \text { new }\left[\mathrm{H}^{+}\right]=10^{-1.0}=0.10 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1}\\ & \text { new } V=\frac{n}{c}=\frac{0.25}{0.10}=2.50 \mathrm{dm}^{3} \tag{1} \end{align*}$ volume water added $=2.50-0.50=2.00 \mathrm{dm}^{3}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	3	2	2		
				Question 11 total	4	12	1	17	8	12		

COMPONENT 1: THE LANGUAGE OF CHEMISTRY, STRUCTURE OF MATTER AND SIMPLE REACTIONS SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	7	2	1	10	1	4
7	1	6	1	8	2	0
8	7	4	5	16	2	0
9	6	8	2	16	4	0
10	4	5	5	13	4	8
11	28	37	15	80	21	12

